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for the vorticity. Furthermore, although a second-order-
accurate compact discretization [5, 6] of such a vorticityThe present paper considers the 2D vorticity–velocity Navier–

Stokes equations written as a second-order system, when a node- definition provides satisfactory solutions for a wide range
centred finite-difference discretization and a uniform Cartesian grid of the Reynolds number [6], the discrete counterpart of
are employed. For such a formulation common vorticity boundary div V 5 0 obtained from such solutions goes to zero lessconditions yield much inferior solutions to those obtained in the

than linearly with the mesh size h for h as small as 0.005.node-centred vorticity–stream function or staggered-grid vorticity–
Nevertheless, the greater simplicity of a node-centredvelocity formulations. However, we demonstrate that these three

formulations are formally equivalent in the sense that they all identi- scheme, particularly in view of the 3D equations and when
cally satisfy: (i) the node-centred finite-difference form of the conti- combined with a multigrid (see Refs. [6, 7] for details)
nuity equation; (ii) the node-centred finite-difference form of the

justifies a continuing effort to circumvent the aforemen-vorticity definition with respect to the mid-cell or staggered velocity
tioned difficulties.components; and (iii) the cell-centred finite-volume (integral) form

of the vorticity definition with respect to the nodal values of the To this end, the following numerical experiment was
velocity components. This last property naturally provides the ‘‘opti- performed. The 2D node-centred vorticity–velocity equa-
mal’’ boundary conditions for the wall vorticity in the node-centred tions (g, u, v) were solved using the vorticity boundary
vorticity–velocity formulation. Numerical solutions to the driven

values obtained from the solution of the g, c equationscavity flow problem are provided which confirm the equivalence
on the same grid. The entire vorticity field was identicalof the three formulations. Q 1996 Academic Press, Inc.

to that of the g, c solution as anticipated, and, more im-
portantly, the velocity field turned out to be numerically

1. INTRODUCTION divergence-free to machine accuracy. Therefore, a study
was undertaken, aimed at discovering appropriate numeri-

Numerical solutions to the vorticity–velocity (g, V) Na- cal boundary conditions for the vorticity capable of provid-
vier–Stokes equations have been pioneered by Fasel [1] ing such a divergence-free solution [10]. In that study, the
to study the stability of 2D boundary layers. Successively, velocity field was integrated numerically along each grid-
many researchers have used such equations for calculating line so as to reproduce the same formula for g at the wall
2D and 3D steady [2–7] as well as unsteady [8, 9] flows. In used with success in the g, c formulation. For the case of
particular, when the continuity equation and the vorticity grids having an even number of gridpoints in both spatial
definition are replaced with a Poisson equation for the directions the approach easily provided the sought solu-
velocity vector, the resulting second-order system for g

tion, whereas for the case of an odd number of gridpointsand V is very similar to that for the vorticity and the stream
a different divergence-free numerical solution was ob-function (c) in two dimensions. One can thus employ nu-
tained for each choice of an arbitrary constant. Most likely,merical methods which proved to be successful for such a
among all such solutions there was the one sought, but noformulation [6, 7].
practical means of obtaining it was devised.Unfortunately, the numerical solutions to the second-

Nevertheless, the goal of making the node-centred finite-order g, V system satisfy the discrete counterparts of the
difference solution to the second-order g, u, v system ascontinuity equation and of the vorticity definition only
accurate as the corresponding staggered-grid one appearedwhen using a staggered-grid discretization [4, 7, 9]. On the
within reach. Therefore, a comparative analysis of thecontrary, if one uses a node-centred discretization, some
node-centred and staggered-grid g, u, v formulations, asnontrivial difficulties arise, as shown in Refs. [5, 6]. The
well as of the g, c one, has been carried out in this paper.numerical solutions are extremely sensitive to the approxi-
In the following sections, it will be shown that these threemation of the equation g 5 curl V, used at solid walls to

provide a substitute for the missing boundary condition formulations can satisfy exactly the discrete counterpart
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OPTIMAL VORTICITY CONDITIONS 209

of the differential continuity equation. Moreover, they can
satisfy exactly the discrete vorticity definition, v 5 curl V,
with respect to the mid-cell velocity components. Finally,
they can satisfy exactly the discrete form of the integral
definition of vorticity, as provided by a local application
of Stokes’ theorem, with respect to the nodal values of the
velocity components. Most importantly, by using such an
integral vorticity definition at the boundary cells, one ob-
tains the long-sought numerical condition at no-slip bound-
aries, which makes the node-centred g, u, v formulation
equivalent to the staggered-grid one.

After describing how to modify an existing numerical
method for the node-centred g, u, v equations, in order
to implement the new numerical boundary conditions for
the vorticity, solutions to the classical driven cavity prob-
lem [11] are presented which validate the proposed ap-
proach.

FIG. 1. Node-centred grid used for the g, c, and g, u, v formulations.

2. GOVERNING EQUATIONS

The 2D vorticity–velocity Navier–Stokes equations can are provided. In both cases, no boundary condition is avail-
be formulated in Cartesian coordinates (x, y) as able for g. The value of g at boundary gridpoints is thus

evaluated in the first case using its definition [1–7], g 5
curl V, and in the second case by means of a combinationgt 1 (ug)x 1 (vg)y 5

1
Re

(gxx 1 gyy), (1)
of the Neumann condition for c and of Eq. (7) (see, e.g.,
Ref. [11]) as described in the following.uxx 1 uyy 5 2gy , (2)

vxx 1 vyy 5 gx , (3) 3. NUMERICAL BOUNDARY CONDITIONS

As already mentioned in the Introduction, three discretewhere t is the time, u and v are the two components of
formulations of the 2D incompressible Navier–Stokesthe velocity vector V, Re is the Reynolds number, the
equations are considered in this paper, namely, the node-advection terms are written in conservative form, and the
centred and staggered-grid g, u, v formulations and thesubscripts denote partial derivatives.
(node-centred) g, c one. The uniform Cartesian grids em-In Eqs. (1)–(3) the two Poisson equations for u and v
ployed by the node-centred and staggered-grid formula-are derived from the continuity equation and the definition
tions are shown in Figs. 1 and 2, where the locations ofof vorticity, namely,
the various variables are indicated, and in Figs. 3a–c, where
solid-wall boundaries are represented.ux 1 vy 5 0, (4)

Concerning the g, c and the staggered-grid g, u, v formu-
g 5 vx 2 uy . (5) lations, the no-slip boundary conditions are given, respec-

tively, as
In the following, it will be useful to consider the g, c

formulation of the incompressible Navier–Stokes equa-
c1 5 a,

c2 2 c0

2Dy
5 b, g1 5 2

c2 2 2c1 1 c0

Dy 2 ,tions, which is recalled here for convenience:
(8a), (8b), (8c)

gt 1 (cy g)x 2 (cx g)y 5
1

Re
(gxx 1 gyy), (6) u3/2 1 u1/2

2
5 b, g1 5 2

u3/2 2 u1/2

Dy
. (9a), (9b)

cxx 1 cyy 5 2g. (7)
In Eqs. (8) and (9), the discrete counterparts of cxx and
vx at the wall are omitted, being identically zero; a and bConcerning the no-slip boundary conditions to be im-

posed at solid walls, one has: (i) for the g, u, v formulation, are the prescribed wall values of c and u; and subscripts
0 and As refer to the mirror points outside the computationalboth velocity components are prescribed; (ii) for the g, c

formulation, the values of c and of its normal derivative domain [7, 11] shown in Figs. 3a, b.
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FIG. 4. Driven cavity geometry and local grid near the bottom-left
FIG. 2. Staggered-grid used for the g, u, v formulation. corner.

For the case of the node-centred g, u, v formulation,
[5, 6]. In particular, with reference to Fig. 3a, the followingof major interest here, it has been shown that the space
two second-order-accurate discretizations of Eq. (5) arediscretization used to evaluate Eq. (5) at solid boundaries
used in this study:has a critical impact on the quality of the numerical solution

g1 5
2u3 1 4u2 2 3u1

2Dy
, (10)

g1 1 g2

2
5 2

u2 2u1

Dy
. (11)

For the driven-cavity flow problem [11] at Re 5 400
(see Fig. 4) numerical solutions have been obtained using a
second-order-accurate node-centred spatial discretization,
the conservative form of the advection terms in the vortic-
ity transport equation and either Eq. (10) or Eq. (11) to
evaluate g at all boundary points (except the four corner
points, which do not need to be computed). The u and v
profiles along the vertical and horizontal centerlines of the
cavity are provided in Fig. 5 for a uniform 49 3 49 grid
(Dx 5 Dy 5 h 5 fkA ). The dotted and broken lines refer to the
Eq. (10)-solution and the Eq. (11)-solution, respectively,
whereas the solid line refers to the staggered-grid solution,
which is identical to the node-centred solution of the g, c
equations [4, 7]. The superiority of Eq. (11), with respect
to Eq. (10), is paramount and the inadequacy of the latter
is worrisome insofar as the problem under consideration
should be well captured by the grid used. However, if one
refines the grid, the two solutions become much closer to
each other (see Fig. 6) which provides the three sets of
results for the case of a uniform 193 3 193 grid (h 5 alAs).

The corresponding vorticity distributions along the mov-FIG. 3. Near wall grids considered for the various numerical vorticity
boundary conditions. ing lid of the cavity are also given in Figs. 7 and 8, for
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FIG. 7. Vorticity distributions along the lid of the cavity for Re 5

400 and h 5 fkA (the solid line also refers to the g, c solution).

FIG. 5. Velocity distributions along the centerlines of the cavity for plied to each boundary cell. With reference to the cell in
Re 5 400 and h 5 fkA (the solid lines also refer to the g, c solution). Fig. 3c, it reads

gi,1 1 gi11,1 1 gi,2 1 gi11,2

4
Dx Dycompleteness. It clearly appears that, whereas the wall

vorticity is always reasonable, the interior velocity field is
seriously compromised by its nonzero divergence. 5 Svi11,1 1 vi11,2

2
2

vi,1 1 vi,2

2 D Dy (12)
The numerical difficulty described above has been over-

come in this paper by using a novel numerical condition
for the wall vorticity, which makes the node-centred g, u, 1 Sui,1 1 ui11,1

2
2

ui,2 1 ui11,2

2 D Dx.
v formulation identical in the discrete to the staggered
one and thus also to the g, c formulation. Such a novel

Discovering such an apparently trivial, but very im-numerical condition is nothing but the second-order-accu-
portant, numerical boundary condition was made possiblerate compact-stencil approximation of Stokes’ theorem ap-
by the analysis described in the following section. Here, it is
anticipated that using such ‘‘optimal’’ numerical boundary
condition for g in the collocated g, u, v formulation pro-
vided the same results as the staggered-grid ones, shown

FIG. 8. Vorticity distributions along the lid of the cavity for Re 5FIG. 6. Velocity distributions along the centerlines of the cavity for
Re 5 400 and h 5 alAs (the solid lines also refer to the g, c solution). 400 and h 5 alAs (the solid line also refers to the g, c solution).
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in Figs. 5–8 as solid lines. More importantly, these results mulation of the Navier–Stokes equations. As in Ref. [12],
one could think of subtracting these terms explicitly fromsatisfy the discrete counterpart of the continuity equation

(4) exactly, i.e., to machine accuracy. the discrete Poisson equations (2) and (3) in order to obtain
a numerical solution satisfying both discrete equations (4)It is noteworthy that for 1D flows Eq. (12) degenerates

into Eq. (11). This may explain the superiority of Eq. (11) and (5). Unfortunately, this leads to an even–odd decou-
pling of the Poisson equations, which cannot thus bewith respect to Eq. (10).
solved numerically.

From the analysis above, it is clear that the node-centred4. A COMPARATIVE ANALYSIS OF THE v, u, v AND
solutions of Eqs. (1)–(3) cannot satisfy exactly the discretev, c FORMULATIONS
counterparts of both Eqs. (4) and (5). However, it can be

In this section, the node-centred and staggered-grid g, shown (see Appendix A) that, if the solutions of the node-
u, v formulations, as well as the g, c one, are analyzed centred g, c and g, u, v equations provide identical discrete
with reference to second-order-accurate central-difference vorticity fields, they satisfy the relationships
discretizations on uniform Cartesian grids.

Consider the node-centred discretization of Eq. (2) at
ui, j 5

ci, j11 2 ci, j21

2Dy
, (17)gridpoint (xi , yj), namely,

vi, j 5 2
ci11, j 2 ci21 j

2Dx
. (18)gi, j11 2 gi, j21

2Dy
5 2

ui11, j 2 2ui, j 1 ui21, j

Dx 2

(13)
Namely, from the identity of the two vorticity fields it

2
ui, j11 2 2ui, j 1 ui, j21

Dy 2 .
follows that the velocity fields are also equivalent. In partic-
ular, the g, u, v solution turns out to be exactly divergence-
free (it can be easily verified by expressing the velocityEliminate the g terms in Eq. (13) by means of the discrete
components in Eq. (15) in terms of nodal values of c,form of the vorticity definition (5),
according to Eqs. (17) and (18)), but it does not satisfy
the discrete form of Eq. (5) exactly, as already shown when

gi, j 5
vi11, j 2 vi21, j

2Dx
2

ui, j11 2 ui, j21

2Dy
. (14) the residual term in Eq. (16) was singled out. On the other

hand, the equivalent g, c solution satisfies such an equa-
tion, exactly, with reference to the mid-cell velocity compo-Then, express the v velocity components in the resulting
nents, namely,numerical equation in terms of the u velocity components,

by using the discrete form of the continuity equation (4),
ui, j11/2 5

ci, j11 2 ci, j

Dy
, vi11/2, j 5 2

ci11, j 2 ci, j

Dx
.

ui11, j 2 ui21, j

2Dx
1

vi, j11 2 vi, j21

2Dy
5 0, (15)

This result is an obvious consequence of the equivalence
of the g, c and staggered-grid g, u, v formulations, proven

written at nodes (xi11 , yj) and (xi21 , yj). If Eq. (13) were in Refs. [4, 7]. Therefore, the g, c solution turns out to be
numerically equivalent to the discrete counterparts of Eqs. equivalent to both the node-centred and staggered-grid
(4) and (5), the resulting equation should be an identity. g, u, v solutions, which provide identical vorticity fields.
Unfortunately, this is not the case, since the following Moreover, the discrete velocity fields obtained from these
nonzero residual term is obtained: two g, u, v solutions satisfy

di, j 5 (ui12, j 2 4ui11, j 1 6ui, j 2 4ui21, j 1 ui22, j)/4Dx 2

ui, j 5
ui, j11/2 1 ui, j21/2

2
, (19)

1 (ui, j12 2 4ui, j11 1 6ui, j 2 4ui, j21 1 ui, j22)/4Dy 2 (16)

vi, j 5
vi11/2, j 1 vi21/2, j

2
, (20)5

Dx 2

4
(uxxxx)i, j 1

Dy 2

4
(uyyyy)i, j 1 O(Dx 4, Dy 4).

as demonstrated in Appendix B. Finally, provided the stag-A similar term comes out when one starts from the Poisson
gered-grid g, u, v solution satisfiesequation (3). It is noteworthy that the di, j term in Eq. (16)

is formally identical to that obtained by Sotiropoulos and
Abdallah [12] for the pressure equation, when considering gi, j 5

vi11/2, j 2 vi21/2, j

Dx
2

ui, j11/2 2 ui, j21/2

Dy
(21)

a node-centred discretization of the primitive variable for-
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at all gridpoints, it follows that the corresponding node- numerical boundary conditions for the vorticity, although
using a local area integral, have nothing in common withcentred g, u, v solution satisfies
the well-known vorticity integral conditions of Quartapelle
[13]. The latter ones allow us to decouple the governinggi, j 1 gi11, j 1 gi, j11 1 gi11, j11

4
Dx Dy equations, apart from the nonlinear advection terms, so

that the vorticity at solid boundaries is determined solely
by means of the velocity boundary conditions. In the pres-

5 Svi11, j 1 vi11, j11

2
2

vi, j 1 vi, j11

2 D Dy (22) ent approach, the vorticity at solid walls requires the
knowledge of the vorticity and velocity values at points on
the boundary and immediately adjacent to it. Therefore,

1 Sui, j 1 ui11, j

2
2

ui, j11 1 ui11, j11

2 D Dx.
the use of the proposed conditions requires a coupled or
iterative solution procedure, as described in the follow-
ing section.This result is proven in Appendix C. It is noteworthy that

Eq. (22) is the compact-stencil second-order-accurate dis-
5. NUMERICAL IMPLEMENTATIONcrete approximation of the integral condition

In order to show how the wall vorticity conditions de-EE
DS

gdS 5 R
l

V ? t dl, (23) rived in the previous section can be imposed in practice,
the classical driven cavity flow problem is considered, using
a uniform m 3 n grid with Dx 5 1/(m 2 1) and Dy 5 (1/
(n 2 1). Of course, the u and v velocity components arenamely, of Stokes’ theorem applied to the computational
prescribed at all boundary points, vi,1 5 v1, j 5 vi,n 5cell [xi , xi11] 3 [yj , yj11].
vm, j 5 ui,1 5 u1, j 5 um, j 5 0, ui,n 5 1, i 5 1, ..., m; j 5In conclusion, the node-centred g, c and g, u, v solutions
2, ..., n 2 1, thus providing 4(m 1 n 2 2) boundary condi-are both equivalent to the staggered-grid g, u, v solution,
tions. The governing equations (1)–(3), discretized at allin the sense that they all satisfy identically the discrete
the internal nodes provide 3(m 2 2)(n 2 2) equations incounterparts of: (i) the differential form of the continuity
3mn unknowns. Equation (12) is then employed for allequation; (ii) the differential form of the vorticity definition
boundary cells, thus providing 2(m 1 n 2 4) algebraicwith respect to the mid-cell velocity components; (iii) the
equations containing the 2(m 1 n 2 2) vorticity boundaryintegral form of the vorticity definition with respect to the
values. The four missing equations can be finally obtainednodal values of the velocity components.
by resorting once again to the proven equivalence of theThe important practical consequence of proving this
staggered-grid and node-centred g, u, v formulations. Suchequivalence is that, by writing Eq. (22) at all computational
equations, derived as shown in Appendix D, are given bycells neighboring no-slip boundaries (see Eq. (12)), one

obtains the ‘‘optimal’’ numerical condition for the wall
vorticity, namely, the one which renders the node-centred g1,2 5

2(v2,2/Dx 2 u2,2/Dy) 2 g2,2

1 1 (Dx/Dy)2 , (24a)
g, u, v solution equivalent to the staggered-grid one.

It is very important to realize that there is a topological
difficulty associated with the use of the numerical vorticity g2,n 5

2(v2,n21/Dx 1 u2,n21/Dy) 2 g2,n21

1 1 (Dy/Dx)2 2
2

Dy
ulid , (24b)

conditions (12) within the context of a collocated space
discretization; namely, the number of Eqs. (12), which is

gm,n21 5 2
2(vm21,n21/Dx 2 um21,n21/Dy) 1 gm21,n21

1 1 (Dx/Dy)2 , (24c)equal to that of the boundary cells, is not always equal to
the number of boundary gridpoints at which g is to be
determined. For a Cartesian domain, of interest here, it is gm21,1 5 2

2(vm21,2/Dx 1 um21,2/Dy) 1 gm21,2

1 1 (Dy/Dx)2 . (24d)
easily seen that the boundary gridpoints outnumber the
boundary cells by the number of convex (908) interior
corners. This is not a problem because, due to the no- The discrete system to be solved is now closed, since there

are 3mn equations in 3mn unknowns. It is noteworthy thatslip conditions on the horizontal and vertical sides of the
boundary meeting at such a corner, the local vorticity must the four corner vorticities appear only in the four equations

(12) written at the corner cells. Therefore, it is possible toequal zero. On the other hand, it is possible to obtain
the additional equations which allow us to evaluate the remove these four equations and unknowns so as to obtain

a reduced closed system of 3mn 2 4 equations in 3mn 2vorticity values at all the boundary points, including the
convex corners, as shown in the next section for the very 4 unknowns. After solving such a system, as described

later, the vorticities at the four corners can be evaluatedpeculiar case of the driven cavity problem [11].
Finally, it must be clearly pointed out that the proposed explicitly using Stokes’ theorem, exactly like one does
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when solving the g, c equations or the staggered-grid g,
u, v equations. The equivalence of the three formulations
is thus complete, even in such an apparently minor detail.

From the preceding discussion, it follows that there are
two possibilities of implementing the proposed vorticity
condition within the context of an iterative solution proce-
dure. By evaluating all internal vorticities and velocities
in Eqs. (12) and (24) at the previous iteration, one decou-
ples them from all other equations written at the internal
points. Then, if one enforces the four known vorticity val-
ues at the corners, one uses all 2(m 1 n 2 4) equations
(12) to evaluate the remaining 2(m 1 n 2 4) vorticity
boundary values, by solving a periodic bidiagonal system.
If one prefers the more general approach of eliminating
the four corner vorticities from the problem, it turns out

FIG. 9. Convergence histories for Re 5 400, h 5 alAs, and different
that the 2(m 1 n 2 6) equations (12) not containing the multigrid levels.
corner values plus the four equations (24) can be solved ex-
plicitly.

It must be pointed out that the numerical solution ob- LR, versus the number of iterations, N, when using 1, 2,
tained using either procedure described above does satisfy 3, and 4 grid levels, respectively. The broken and solid
the discrete integral definition of the vorticity, Eq. (22), lines refer to the method of Ref. [6], using Eq. (11), and
also at all nonboundary cells and, therefore, also over the to the present approach using either procedure for enforc-
entire computational domain. ing the new boundary conditions, respectively. It appears

that the increased accuracy is obtained without any loss
6. NUMERICAL METHOD AND RESULTS of the convergence rate of the basic relaxation scheme.

Only a small increase of the roundoff error (using single
In order to test the proposed formulation, a reliable and precision arithmetic on a HP-APOLLO 735 workstation)

efficient numerical method [6] has been used to solve the is caused by the integral conditioning.
driven cavity flow problem. The method is a scalar alternat-
ing direction line-Gauss–Seidel iterative procedure accel- CONCLUSIONS AND FUTURE WORK
erated by multigrid. The vorticity at all the boundary grid-
points is evaluated explicitly before each solution sweep, For the vorticity–velocity Navier–Stokes equations writ-
using the procedure described in the previous section. ten as a second-order system on a node-centered uniform

Since the present calculations have the sole purpose of Cartesian grid, the proper wall vorticity conditions, capable
validating the numerical vorticity boundary conditions, the of providing numerical solutions as accurate as those ob-
results are presented for the single case Re 5 400, using tained on a staggered grid, have been found by applying
h 5 fkA and h 5 alAs. Convergence to machine zero, using Stokes’ theorem to each computational cell adjacent to the
single-precision arithmetic, has been obtained. As antici- boundary. Numerical solutions to the driven cavity flow
pated, the two vorticity fields obtained using the present problem are presented which demonstrate the validity of
approach and the staggered-grid method of Ref. [7] were the proposed approach. Therefore, for the special case
found to be identical within roundoff. Furthermore, the considered in this study, the superiority of the staggered-
corresponding velocity fields have been verified to satisfy grid discretization for the second-order vorticity–velocity
Eqs. (19) and (20) at all gridpoints to machine zero. There- equations has been overcome. The practical usefulness of
fore, the solid lines of Figs. 5–8 also refer to the present the proposed conditions requires their extensions to gen-
results. More difficult solutions for Re 5 1000 and Re 5 eral curvilinear coordinates and three dimensions: both
3200 have also been obtained, using h 5 lhA and h 5 asAk, appear to be rather difficult tasks, but are in the authors
respectively, which again coincide with the staggered-grid opinion very worth pursuing.
ones presented in Ref. [7] and are thus omitted for brevity.
In all cases the vorticity integral over the entire computa- APPENDIX A
tional domain was computed and was found to be equal
to 21, to machine accuracy. Consider the node-centred second-order-accurate cen-

tral-difference discretizations of the g, c and g, u, v equa-The Re 5 400, h 5 alAs case has also been used to demon-
strate the convergence rate of the method: Figure 9 pro- tions on a uniform m 3 n Cartesian grid. It is proved that,

if the numerical solutions to two such sets of equationsvides the logarithm of the L1 norm of the vorticity residual,
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provide identical discrete vorticity fields, the discrete solu- equations satisfy Eqs. (19) and (20). In fact, with reference
to the horizontal velocity components, u, the staggered-tions for ui, j , vi, j are related to the discrete solution for ci, j

according to Eqs. (17) and (18). In fact, the two discrete grid solutions satisfy the following equations at nodes (xi ,
yj11/2) and (xi , yj21/2), respectively,vorticity fields being identical, both must satisfy the dis-

crete equations
gi, j11 2 gi, j

Dy
5 2d2ui, j11/2 , (1B)gi, j 5 2d2ci, j , (1A)

gi, j11 2 gi, j21 5 22Dy ? d2ui, j , (2A) gi, j 2 gi, j21

Dy
5 2d2ui, j21/2 , (2B)

gi11, j 2 gi21, j 5 2Dx ? d2vi, j , (3A)

i 5 2, ..., m 2 1; j 5 2, ..., n 2 1, where d2 indicates the where d2 is again the five-point Laplacian. By adding Eqs.
standard five-point Laplacian, namely, (1B) and (2B) one obtains

d2(?)i, j 5
(?)i21, j 2 2(?)i, j 1 (?)i11, j

Dx2 1
(?)i, j21 2 2(?)i, j 1 (?)i, j11

Dy2 .
gi, j11 2 gi, j21

Dy
5 2d2ui, j21/2 2 d2ui, j11/2

5 2d2(ui, j21/2 1 ui, j11/2).By writing Eq. (1A) at gridpoints (xi , yj11) and (xi , yj21),
subtracting the resulting equations from each other, and

Moreover, the node-centred solutions satisfy the discreteeliminating the vorticity terms by means of Eq. (2A), one
form of Eq. (2), namely,easily obtains

gi, j11 2 gi, j21

Dy
5 22d2ui, j .d2Sui, j 2

ci,j11 2 ci, j21

2Dy D5 d2 fi, j 5 0, (4A)

Since the node-centred and staggered-grid solutions to thewhere the shorthand notation, fi, j , is introduced for conve-
g, u, v equations provide identical vorticity fields, one cannience. Equation (4A), which is to be satisfied at all interior
equate the right-hand sides of the two equations above,gridpoints, provides a linear system of (m 2 2) 3 (n 2 2)
which givesequations for m 3 n 2 4 unknowns. Furthermore, if all

boundaries are no-slip ones, namely lines of constant c,
and the boundary conditions are imposed according to Eq.

d2Sui, j 2
ui, j21/2 1 ui, j11/2

2 D5 d2fi, j 5 0,(8b), it can be easily seen that system (4A) is made complete
by the following homogeneous Dirichlet boundary condi-

i 5 2, ..., m 2 1; j 5 2, ..., n 2 1.

(3B)

tions:

Moreover, if the no-slip conditions are imposed for thef1, j 5 fn, j 5 fi,1 5 fi,m 5 0, i 5 2, ..., m 2 1; j 5 2, ..., n 2 1.
staggered-grid discretization according to Eq. (9a), fi, j 5(5A)
0 at the boundaries. Just like in Appendix A, system (3B),
after eliminating the boundary fi, j values, has the uniqueSuch a complete system is well known to possess the unique
homogeneous solution, namely,solution fi, j 5 0, i 5 2, ..., m 2 1, j 5 2, ..., n 2 1, so that

ui, j 5
ui, j21/2 1 ui, j11/2

2
, i 5 2, ..., m 2 1; j 5 2, ..., n 2 1.ui, j 5

ci, j11 2 ci, j21

2Dy
, i 5 2, ..., m 2 1; j 5 2, ..., n 2 1,

A similar procedure applied to the vertical velocity compo-which completes the proof sought. Equation (18) is proved
nent, v, allows us to prove Eq. (20).in much the same manner, starting from Eq. (3A) instead

of Eq. (2A).
APPENDIX C

APPENDIX B
Consider the staggered-grid second-order-accurate cen-

tral-difference discretizations of the g, u, v equations. WithIt is proved that the discrete velocity fields as obtained
from the node-centred and staggered-grid second-order- reference to the grid of Fig. 2, one can write Eq. (21) at

nodes (xi , yj), (xi11 , yj), (xi , yj11), and (xi11 , yj11), to obtainaccurate central-difference discretizations of the g, u, v
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The continuity equation, written at the corner cell, reads
gi, j 5

vi11/2, j 2 vi21/2, j

Dx
2

ui, j11/2 2 ui, j21/2

Dy
,

1
Dx

(u2,111/2 2 u1,111/2) 1
1

Dy
(v111/2,2 2 v111/2,1) 5 0.

gi11, j 5
vi13/2, j 2 vi11/2, j

Dx
2

ui11, j11/2 2 ui11, j21/2

Dy
,

(4D)

gi, j11 5
vi11/2, j11 2 vi21/2, j11

Dx
2

ui, j13/2 2 ui, j11/2

Dy
, Since, due to the no-slip boundary condition, u1,111/2 5

v111/2,1 5 0, Eq. (4D) becomes

gi11, j11 5
vi13/2, j11 2 vi11/2, j11

Dx
2

ui11, j13/2 2 ui11, j11/2

Dy
.

u2,111/2 5 2
Dx
Dy

v111/2,2 . (5D)

By adding the four equations above one has
Consider then Eq. (21) written at node (1, 2):

gi, j 1 gi11, j 1 gi, j11 1 gi11, j11

g1,2 5
1

Dx
(v111/2,2 2 v121/2,2) 2

1
Dy

(u1,211/2 2 u1,111/2).
5

1
Dx

[(vi11/2, j 1 vi13/2, j) 2 (vi21/2, j 1 vi11/2, j)
(6D)

1 (vi11/2, j11 1 vi13/2, j11) 2 (vi21/2, j11 1 vi11/2, j11)]
Since u1,211/2 5 u1,111/2 5 (v111/2,2 1 v121/2,2)/2 5 v1,2 5 0,
due to the no-slip boundary conditions, one easily obtains2

1
Dy

[(ui, j11/2 1 ui, j13/2) 2 (ui, j21/2 1 ui, j11/2)

1 (ui11, j11/2 1 ui11, j13/2) 2 (ui11, j21/2 1 ui11, j11/2)] v111/2,2 5
Dx
2

g1,2 . (7D)

5
2

Dx
(vi11, j 2 vi, j 1 vi11, j11 2 vi, j11)

The staggered-grid velocity components in the right-hand
side of Eq. (1D) are finally eliminated by means of Eqs.

2
2

Dy
(ui, j11 2 ui, j 1 ui11, j11 2 ui11, j), (2D), (3D), (5D), and (7D), to give

where Eqs. (19) and (20) have been used to introduce the g1,2 5
2(v2,2/Dx 2 u2,2/Dy) 2 g2,2

1 1 (Dx/Dy)2 . (8D)
nodal values of the velocity components. A little algebra
finally allows us to recover Eq. (22), which is valid for all
internal and boundary cells and turns out to be the numeri- ACKNOWLEDGMENTS
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